الأحد، 16 مايو 2021

الكيمياء الحيوي + الكمياء االتحليلية

كيمياء حيوية

فازت جيتي كوري وكارل كوري بجائزة نوبل عام 1947 لاكتشافهما دورة Cori.

الكِيمياء الحيوية (النسبة إليها: كيمحيوي) هي أحد فروع العلوم الطبيعية وتختص بدراسة التركيب الكيميائي لأجزاء الخلية في مختلف الكائنات الحية سواء كانت كائنات بسيطة مثل (البكتيريا، الفطريات والطحالب) أو معقدة كالإنسان والحيوان والنبات.

ويوصف علم الكيمياء الحيوية أحيانًا بأنه علم كيمياء الحياة وذلك نظرًا لارتباط الكيمياء الحيوية بالحياة، فقد ركز العلماء في هذا المجال على البحث في التفاعلات الكيميائية داخل الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتكوين، أو من حيث الهدم وإنتاج الطاقة. 


والتي تساعد بشكل كبير في فهم أنسجة وأعضاء ووظائف الكائنات الحية.وتعد الكيمياء الحيوية نقطة التقاطع بين علم الكيمياء وعلم الأحياء، ويوجد ثلاثة أقسام رئيسية لعلم الكيمياء الحيوية وهي: علم الأحياء البنيوي، علم الانزيمات، والأيض (علم عمليات البناء في الجسم). وعلى مدى العقود الأخيرة من القرن العشرين، نجحت الكيمياء الحيوية من خلال هذه التخصصات الثلاثة في شرح معظم العمليات الحيوية في الإنسان والحيوان والنبات. ويجري الكشف عن جميع مجالات علوم الحياة تقريبا وتطويرها من خلال منهجية وبحوث الكيميائية الحيوية.ترتبط الكيمياء الحيوية ارتباطًا وثيقًا بعلم الأحياء الجزيئي، وهي دراسة الآليات الجزيئية التي بواسطتها يتم ترميز المعلومات الوراثية في الحمض النووي في العمليات الحيوية.

واعتمادًا على التحديد الدقيق للمصطلحات المستخدمة، يمكن اعتبار البيولوجيا الجزيئية بمثابة فرع من الكيمياء الحيوية، أو الكيمياء الحيوية كأداة للتحقيق ودراسة البيولوجيا الجزيئية.

تتعامل الكيمياء الحيوية بشكل كبير مع التركيب والوظيفة والتداخلات بين مكونات الخلية والجزيئات الكبيرة مثل الدهون والكربوهيدرات والبروتينات والأحماض النووية وجزيئات حيوية أخرى.

تكون بعض هذه الجزيئات كبيرة ومعقدة وتسمى البوليمرات الحيوية (biopolymers)، وهذه تتكون من وحدات متكررة متشابهة تسمى كل وحدة مونومر (Monomer). يحتوي كل جزيء من البوليمرات الحيوية على مجموعات مختلفة من الوحدات، مثلًا يعد البروتين بوليمر تتكون وحداته من مجموعة مختلفة من 20 حمض أميني أو أكثر. الكيمياء الحيوية تدرس الخصائص الكيميائية للجزيئات الحيوية الهامة مثل البروتينات وخصوصا التفاعلات التي تحفز عن طريق الإنزيمات. الكيمياء الحيوية المتعلقة بالعمليات الأيضية داخل الخلية والمتعلقة بجهاز الغدد الصماء تمت دراستها بشكل كبير. وهناك مجالات أخرى للكيمياء الحيوية تشمل المادة الوراثية (DNA ،RNA)، ونقل المواد من خلال غشاء الخلية، ونقل الإشارات. يتم باستخدام نتائج الكيمياء الحيوية في المقام الأول في الطب، والتغذية، والزراعة. في الطب، يدرس الكيميائيون الحيويون أسباب وعلاج الأمراض. وفي مجال التغذية، يدرسون كيفية الحفاظ على الصحة والعافية ودراسة آثار نقص التغذية (أو ما يُعرف بسوء التغذية).

وفي مجال الزراعة، يتقصى علماء الكيمياء الحيوية التربة والأسمدة، ويحاولون اكتشاف طرق لتحسين زراعة المحاصيل وتخزين المحاصيل ومكافحة الآفات.

تاريخ الكيمياء الحيوية

بنية الهيموجلوبين – أحد الجزيئات الحيوية الشهيرة.

يمكن أن يُنظر إلى الكيمياء الحيوية، في أوسع تعريف لها، على أنها دراسة لمكونات الكائنات الحية وتكوينها وكيفية تضافرها لتصبح حياة، ومن هذا المنطلق، قد يعود تاريخ الكيمياء الحيوية إلى الإغريق.

ومع ذلك، فإن الكيمياء الحيوية كنظام علمي محدد قد بدأت في وقت ما في القرن التاسع عشر، أو في وقت مبكر قليلًا، اعتمادًا على جانب الكيمياء الحيوية الذي يتم التركيز عليه. وجادل البعض بأن بداية الكيمياء الحيوية قد تكون بدأت كعلم مع اكتشاف إنزيم الدياستيز والذي أصبح يسمى اليوم أميلاز (بالإنجليزية: Amilase)‏ عام 1833 على يد العالم الفرنسي أنسيلم بايين (بالفرنسية: Anselme Payen)‏. في عام 1897، قام العالم الألماني إدوارد بوخنر (بالألمانية: Eduard Buchner) بأول تجربة كيمياء حيوية معقدة خارج الخلية عندما نجح بإجراء التخمر الكحولي في خلايا مستخلصة من الخميرة.

رغم أنه يظهر أن مصطلح الكيمياء الحيوية (بالإنجليزية: Biochemistry)‏ استعمل لأول مرة في عام 1882، وقد يشير البعض إلى ان

من المتعارف عليه أن الاستعمال الرسمي لهذا المصطلح حصل عام 1903 من عالم الكيمياء الألماني كارل نوبرغ (بالألمانية: Carl Neuberg).

وقبل ذلك، كان هذا المجال يسمى الكيمياء الوظيفية أو الكيمياء الفيزيولوجية (بالإنجليزية: Physiological chemistry)‏.منذ ذلك الوقت تطور علم الكيمياء الحيوية خصوصا في منتصف القرن العشرين مع اكتشاف تقنيات جديدة أدت إلى اكتشاف العديد من الجزيئات والمسارات الأيضية المختلفة للخلية مثل الاستشراب، ودراسة البلورات بالأشعة السينية)، والتداخل المزدوج الاستقطاب، ومطيافية الرنين المغناطيسي النووي للبروتين، ووصفها بالنظائر المشعة، والمجهر الإلكتروني، ومحاكاة الديناميات الجزيئية. سمحت هذه التقنيات بالكشف والتحليل التفصيلي للعديد من الجزيئات والمسارات الأيضية للخلية، مثل تحلل الجلوكوز ودورة كريبس، وقادت لفهم الكيمياء الحيوية على المستوى الجزيئي.

كان يُعتقد في السابق أن الحياة والمواد المكونة لها مختلفة عن المكونات الموجودة في المواد غير الحية، وأن الكائنات الحية فقط هي من ينتج هذه المواد.

ثم في عام 1828 م نشر فريدريك ولير (Friedrich Wöhler) ورقة عن إمكانية تصنيع مادة اليوريا، مثبتًا بذلك أن المواد العضوية يمكن إنتاجها صناعيًّا.حدث تاريخي مهم آخر في الكيمياء الحيوية هو اكتشاف الجين ودوره في نقل المعلومات في الخلية. غالبًا ما ُيدعى هذا الجزء من الكيمياء الحيوية بعلم الأحياء الجزيئي). في خمسينيات القرن العشرين، لعب جيمس د. واتسون، وفرانسيس كريك، وروزاليند فرانكلين وموريس ويلكنز، دورًا أساسيًا في حل بنية الحمض النووي واقتراح علاقته بالانتقال الوراثي للمعلومات. وفي عام 1958، حصل جورج بيدل وإدوارد تاتوم على جائزة نوبل للعمل على الفطريات التي تظهر أن أحد الجينات ينتج إنزيم واحد (فرضية جين واحد إنزيم واحد). وفي عام 1988، كان كولن بيتشفورك أول شخص يُدان بالقتل باستخدام الحمض النووي (DNA)، مما أدى إلى نمو علم الطب الشرعي (أو ما يُعرف بعلم الصور الجنائية). وفي الآونة الأخيرة، حصل أندرو فاير) وكريغ ميلو على جائزة نوبل في الطب أو علم وظائف الأعضاءعام 2006 لاكتشاف دورتداخل الحمض النووي الريبوزي (RNAi)، في تثبيط التعبير الجيني.

المواد البدائية: العناصر الكيميائية للحياة

حوالي 24 من أصل 94 عنصر كيميائي موجود في الطبيعة تكون مهمة للحياة. أغلب العناصر النادرة في الأرض غير مهمة للحياة (باستثناء اليود والسيلينيوم) بينما لا يتم استخدام عدد قليل منها مثل (الألمينيوم والتيتانيوم). معظم الكائنات لديها احتياجات مشتركة، لكن هناك فروق بسيطة بين الحيوانات والنباتات. مثلًا الطحالب المائية تستخدم البروم ولكن طحالب الأرض والحيوانات لا تحتاجه. كل الحيوانات تحتاج الصوديوم ولكن بعض النباتات لا تحتاجه. النباتات تحتاج البورون والسيليكون لكن الحيوانات لا تحتاجها. فقط ستة عناصر (الكربون، الهيدروجين، الأوكسجين، النيتروجين، الكالسيوم، الفسفور) تشكل 99% من كتلة جسم الإنسان. بالإضافة لهذه الستة عناصر يحتاج الإنسان كميات صغيرة من 18 عنصر آخر.

الجزيئات الحيوية

الفئات الأربع الرئيسة من الجزيئات في الكيمياء الحيوية هي الكربوهيدرات والدهون (أو ما تسمى بالليبيدات) والبروتينات والأحماض النووية. العديد من الجزيئات الحيوية بوليمرات، حيث أن المونومرات هي جزيئات صغيرة ترتبط مع بعضها لتكون الجزيئات الكبيرة، والتي تعرف بالبوليمرات.

الكربوهيدرات

بلورات سكروز أو السكر العادي، أحد أنواع الكربوهيدرات.

الكربوهيدرات مكونة من جزيئات تسمى السكريات الأحادية مثل الجلوكوز والفركتوز. عندما يتحد جزيئان من السكريات الأحادية يخرج جزيء ماء بسبب خروج جزيئين هيدروجين وجزيء أوكسجين. كما تسمى الكربوهيدرات بمائية الكربون لأن ذرة الكربون تكون محاطة بذرات الهيدروجين والأوكسجين.

الدهون

جزئ جليسرول مع ثلاثة جزيئات من الأحماض الدهنية. تعتبر الأحماض الدهنية في هذه الحالة هي المونومرات وقد تكون مشبعة (لا تحتوي على روابط ثنائية بين ذرات الكربون) أو غير مشبعة(تحتوي على رابطة ثنائية أو أكثر). الدهون، وخصوصًا الدهون الفسفورية تستخدم في نواتج صيدلانية مختلفة إما كمواد مساعدة لذوبان مواد أخرى أو كحوامل للمواد."المكوكبر للدهون في الجسم الدهون عادة تتكون من جزيء جليسرول متحد مع جزيئات أخرى. الجليسريدات الثلاثية " تتكون من جزئين

استعملت كلمه لبيد (Lipid) منذ مدة طويلة للتعبير عن مجاميع من المواد الكيميائية غير المتجانسة التي لاتذوب في الماء ولكنها تذوب في المذيبات العضوية . ان اللبيدات مشتقات ايونية أو قطبية من الهايدروكاربونات وهي مركبات ثنائية الميل لأنها تحتوي على مجموعات أيونية أو قطبية محبة للماء ومجموعات غير قطبية وغير محبة للماء ولا تنجذب له(138)64 .وهي من المكونات الغذائية المهمة لأنها غنية بالطاقة وتحتوي على الفيتامينات الذائبة في الدهون والاحماض الدهنية الأساسية ولها فوائد عديدة إذ تُعد مصدرًا من مصادر الطاقة المخزونة في الانسجة الدهنية.

البروتينات

البروتينات جزيئات كبيرة جدا تتكون من مونومرات تسمى الأحماض الأمينية. في الجسم هناك 20 حمض أميني، يتكون كل واحد مجموعة كربوكسيل ومجموعة أمين وسلسلة جانبية (تعرف بمجموعة R). مجموعة R هي ما تجعل كل حمض أميني يختلف عن الآخر، وخصائص هذه المجموعة تؤثر بشكل كبير على الشكل الثلاثي الأبعاد للبروتين. عندما تتحد الأحماض الأمينية يكونوا رابطة خاصة تسمى الرابطة الببتيدية عن طريق تفاعل نازع للماء، وتصبح عديدة الببتيدات.

الأحماض النووية

الأحماض النووية هي الجزيئات التي تكون الـحامض النووي DNA، وهي مادة مهمة تستخدمها الكائنات الحية لتخزين المعلومات الوراثية. أشهر أنواع الأحماض النووية هي الحامض النووي الريبوزي منقوص الأوكسجين (deoxyribonucleic acid) والحمض النووي الريبوزي (ribonucleic acid). المونومرات التي تكونهم تسمى النيوكليوتيدات (nucleotides). أشهر هذه النيوكليوتيدات هي أدينين، جوانين، سيتوسين، ثيمين، ويوراسيل. الأدينين يرتبط مع الثيمين واليوراسيل. الثيمين يرتبط فقط مع الأدينين. السيتوسين والجوانين يرتبطون مع بعضهم فقط.

الكربوهيدرات

وظيفة الكربوهيدرات هي تخزين الطاقة. السكريات هي كربوهيدرات، ولكن ليس كل الكربوهيدرات سكريات. توجد الكربوهيدرات على الأرض بكمية أكبر من أي مادة حيوية أخرى. وتستخدم لتخزين الطاقة والمعلومات الوراثية، وتلعب دورا هاما في التفاعل والاتصال بين الخلايا.

السكريات الأحادية (Monosaccharides)

هي أبسط شكل في الكربوهيدرات وتحتوي على كربون وهيدروجين وأوكسجين بنسبة 1:2:1. يعد السكريات الاحادية واحدا من أهم السكريات الأحادية ومثله الفركتوز المسؤول عن الطعم السكري للفواكة. بعض هذه السكريات تحتوي على مجموعة ألديهيد (CHO) وبعضها تحتوي على مجموعة كيتون(O=C). ويتم تقسيمها طبقا لعدد ذرات الكربون بها إلى :

- triosis,tetrosis,pentosis,hexosis

ثم تذكر تركيب كل منها على حدة .

السكريات الثنائية (Disaccharides)

اثنان من السكريات الأحادية يمكن أن يرتبطا بتفاعل نازع للماء (dehydration synthesis) حيث يتم إزالة ذرة هيدروجين في نهاية أحد الجزيئين وجزيء هيدروكسيل من الجزيء الآخر ويتم ازالتهم على شكل جزيء ماء. والجزيء الناتج من ارتباط سكرين أحاديين يسمى سكرا ثنائيا. ويمكن عكس هذا التفاعل باستخدام جزيء ماء لفصل السكر الثنائي. أكثر السكريات الثنائية شهرة هو السكروز (سكر المائدة) ويتكون من جزيء جلوكوز وجزيء فركتوز مرتبطين معا. مثال آخر هو اللاكتوز ويتكون من جزيء جلوكوز وجزيء جالاكتوز.

السكريات قليلة التعدد والسكريات العديدة (Oligosaccharides and polysaccharides)

عندما تتحد جزيئات سكر أحادية قليلة (من 3 إلى 6) مع بعضها تسمى سكريات قليلة التعدد (Oligosaccharides). وعندما تتحد جزيئات سكر أحادية كثيرة مع بعضها تسمى سكريات عديدة (polysaccharides). وقد تكون مرتبطة على شكل خط مستقيم أو قد تكون متشعبة. أشهر اثنان من السكريات العديدة هما السيليولوز الجلاكوجين، والاثنان يتكونان من جزيئات جلوكوز متحدة مع بعضها.

  • السيليولوز ينتج من قبل النباتات وهو مكون أساسي من مكونات جدار الخلية، الإنسان لا يستطيع إنتاجه أو هضمه.
  • أما الجلايكوجين هو سكر حيواني، يستخدمه الإنسان والحيوان كمخزن للطاقة.

استخدام الكربوهيدرات كمصدر للطاقة

الجلوكوز هو مصدر الطاقة الرئيس. السكريات العديدة يتم تكسيرها في الجسم إلى وحدات من السكريات الأحادية.

  • تحلل الجلوكوز اللاهوائي (anaerobic Glycolysis)

يتم التمثيل الغذائي للجلوكوز بطريقة من عشر خطوات تسمى تحلل الجلوكوز (Glycolysis). النتيجة تكون تكسير جزيء واحد من الجلوكوز إلى جزيئين من حمض البيروفيك، وينتج أيضا جزيئين من مركب (ATP) وهو مصدر الطاقة للخلية، وينتج أيضا جزيئين من مادة مُختزِلة هي (NADPH). وهذه العملية لا تتطلب وجود أوكسجين.

  • تحلل الجلوكوز الهوائي (aerobic glycolysis)

في الخلايا التي تحتوي كمية كافية من الأوكسجين مثل أغلب خلايا الإنسان. وفي هذه الطريقة يتم استخدام الأوكسجين لغرض تمثيل الجلوكوز. بعد سلسلة من التفاعلات الكيميائية تكون المحصلة إنتاج 32 جزيء من مادة (ATP) لكل جزيء جلوكوز. وهذه الطريقة توفر طاقة للجسم أعلى من التمثيل اللاهوائي للجلوكوز.

  • عملية تصنيع الجلوكوز (Gluconeogenesis)

هي عملية تصنيع الجلوكوز من مصادر غير سكرية وتتم في الكبد. وتتم في حالات الصيام أو المجاعات عندما يكون الجلوكوز الداخل إلى الجسم قليل. الجلوكوز الذي تكون يمكن استخدامه في إنتاج الطاقة أو تخزينه على شكل جلايكوجين، وفي النباتات يخزن على شكل نشا، ويمكن أن يدخل في تركيب سكريات ثنائية أو عديدة.

البروتينات

مثل الكربوهيدرات، تؤدي البروتينات أدوارا تركيبية. على سبيل المثال حركة البروتينين (الأكتين والميوسين) تؤدي إلى حركة العضلات الهيكلية. أهم أنواع البروتينات هي الإنزيمات. هذه الإنزيمات تتعرف على مواد تتفاعل مع بعضها وتقوم بتسريع التفاعل بينهم. الإنزيمات تسرع التفاعل بمعدل 1011 أو أكثر حيث أن التفاعل الذي قد يحتاج 3000 عام ليكتمل تلقائيًّا قد يحتاج لأقل من ثانية في وجود الإنزيمات. الإنزيم نفسه لا يستهلك في التفاعل ويكون حرًّا حتى يُحدث نفس التفاعل بمواد جديدة. باستخدام بعض المعادلات يمكن التحكم في نشاط الإنزيمات. البروتينات هي سلسلة من الأحماض الأمينية. الحمض الأميني يتكون من ذرة كربون مرتبطة بأربع مجموعات. واحدة منهم هي مجموعة الأمين (NH2). وواحدة هي مجموعة الكربوكسيل (COOH). الثالثة هي ذرة هيدروجين. والرابعة يرمز لها بـ (R) وهي تختلف من حمض أميني لآخر. هناك عشرين حمض أميني. بعضها لها وظائف بنفسها مثل الجلوتامات حيث أنه ناقل عصبي. الأحماض الأمينية يمكن أن ترتبط ببعضها عن طريق الرابطة الببتيدية. ويتم ذلك عن طريق تفاعل طارد للماء حيث يتم إزالة جزيء ماء والرابطة الببتيدية تربط ذرة نيتروجين في الموجودة في أحد الأحماض الأمينية في مجموعة الأمين بذرة الكربون في مجموعة الكربوكسيل في الحمض الأميني الآخر. والجزيء الناتج يسمى ثنائي الببتيد. يمكن وصف تركيب البروتينات بأربع مستويات. التركيب الأولي، حيث يكون البروتين مكون من سلسلة خطية من الأحماض الأمينية. التركيب الثنائي، يكون البروتين ملتف حول نفسه إما على شكل حلزون ألفا (α-helix) أو صحيفة بيتا(β-sheet). التركيب الثلاثي، وهو الشكل الثلاثي الأبعاد للبروتين. التركيب الرباعي، هو تركيب البروتين المكون من عدة وحدات ببتيدية. البروتينات التي تستهلك في الغذاء يتم تكسيرها إلى أحماض أمينية أو ثنائي الببتيد في الأمعاء الدقيقة, ثم يتم امتصاصها. ويمكن أن تتحد بعد ذلك لتكوين بروتين جديد. يمكن للنباتات والبكتيريا أن تصنع كل العشرين حمض أميني، بينما الإنسان والحيوان يمكنهم تصنيع نصفها فقط. لذلك هناك أحماض أمينية تسمى الضرورية وهي التي لا يمكن تصنيعها داخل الجسم، والغير ضرورية وهي التي يمكن تصنيعها.

الدهون

معظم الدهون لديها بعض الخصائص القطبية بجانب كونها غير قطبية بشكل كبير. بشكل عام تركيبها العام غير قطبي أو كاره للماء (hydrophobic), بمعنى أنه لا يتفاعل مع المذيبات القطبية مثل الماء. جزء آخر من تركيبها هو الجزء المحب للماء (hydrophilic) ويكون له القابلية للارتباط بالمذيبات القطبية. مما يجعل جزيء الدهون محب وكاره للماء في نفس الوقت (amphiphilic). الدهون جزء مهم من غذائنا اليومي. أغلب الزيوت ومشتقات الحليب التي نستخدمها للطبخ والأكل مثل الزبدة والجبنة تتكون من دهون. الزيوت النباتية غنية بالدهون العديدة الغير مشبعة. الدهون في الجسم يتم تكسيرها إلى أحماض دهنية وجليسرول وهي آخر نواتج لعملية الهضم.

الأحماض النووية

الحامض النووي هو جزيء كبير، معقد، وزنه الجزيئي عال، تتكون من سلسلة من النيوكليوتيدات ويحمل الصفات الوراثية. أكثر أنواع الأحماض النووية شيوعًا هي الحامض النووي الريبوزي منقوص الأوكسجين (DNA) والحامض النووي الريبوزي (RNA). الأحماض النووية توجد في كل الخلايا الحية والفيروسات. بجانب كونها المادة الوراثية للخلية، فإنها تلعب دورًا في كونها تعتبر مراسلًا ثانيًا، كما أنها تشكل قاعدة جزيء مادة (ATP) وهي مصدر الطاقة لكل الكائنات الحية. الأحماض النووية سميت بهذا الاسم بسبب وجودها داخل نواة الخلية. والمونومرات المكونة لها تسمى نيوكليوتيدات وكل نيوكليوتيدة تتكون من ثلاثة أجزاء: قاعدة نيتروجينية (إما بيورين أو بيريميدين)، وسكر خماسي، ومجموعة فسفور. النيوكليوتيدات تختلف عن بعضها في نوع السكر وفي نوع القاعدة النيتروجينية.

علاقة الكيمياء الحيوية بغيرها من العلوم الحيوية المختصة بالجزيئات

الباحثون في مجال الكيمياء الحيوية يستخدمون تقنيات متعلقة بالكيمياء الحيوية لكنهم يدمجونها بنحو متزايد بتقنيات من علم الوراثة، والأحياء الجزيئية، والأحياء الفيزيائية. لا يوجد فرق كبير بين هذه التخصصات من ناحية المحتوى والتقنيات المستخدمة. واليوم بالكاد نفرق بين مصطلح الكيمياء الحيوية والأحياء الجزيئية.

  • الكيمياء الحيوية: هي علم دراسة المواد الكيميائية والعمليات الحيوية داخل جسم الكائن الحي. وتركز على تركيب ووظيفة الجزيء الحيوي.
  • علم الوراثة: دراسة أثر الاختلافات الوراثية على الكائنات الحية. ويستدل على الاختلافات بغياب مادة طبيعية من جسم الكائن الحي.
  • الأحياء الجزيئية: علم يدرس الأسس التي تقوم عليها عمليات التكرار والنسخ والترجمة للمادة الوراثية.

انظر أيضًا

قوائم
مواضيع متعلقة

مراجع


  1. كيمياء حيوية (2007), pp. 193–194.

وصلات خارجية

  • "Biochemistry". acs.org. مؤرشف من الأصل في 31 مارس 2019.

  • LIPD MAPS, un site de ressource sur les lipides, comptait قالب:Nombre le 16 août 2006. نسخة محفوظة 24 فبراير 2018 على موقع واي باك مشين.

  • Karp (2009), p. 2.

  • كيمياء حيوية (2012). p. 62.

  • Voet (2005), p. 3.

  • كيمياء حيوية (1961), p. 1124.

  • كيمياء حيوية (2007), p. 45.

  • كيمياء حيوية (2012), Chapter 14.

  • كيمياء حيوية (2009), pp. 1–4.

  • كيمياء حيوية (2010), pp. 61, 75.

  • كيمياء حيوية (2000), p. 81.

  • كيمياء حيوية (2000), p. 75.

  • كيمياء حيوية (2005), p. 26.

  • كيمياء حيوية (2000), pp. 96–98.

  • كيمياء حيوية (2009), p. 2982.

  • كيمياء حيوية (1986), p. 55.

  • كيمياء حيوية (2013), p. 36.

  • كيمياء حيوية (1890), pp. 419–20.

  • كيمياء حيوية (2001), pp. 121–133.

  • كيمياء حيوية (2012), p. 2.

  • كيمياء حيوية (2012), pp. 19–20.

  • كيمياء حيوية (2012), p. 32.

  • كيمياء حيوية (2009), p. 5.

  • ===============================

    كيمياء تحليلية

    من ويكيبيديا، الموسوعة الحرة
    اذهب إلى التنقل اذهب إلى البحث
    تعيين النحاس في هذا التحليل النوعي البسيط، واللون الأزرق المخضر في الشعلة دليل على وجود النحاس. (الصوديوم مثلا ينتج لونا برتقاليا أصفرا).

    الكيمياء التحليلية هي دراسة التركيب الكيميائي للمواد الطبيعية والاصطناعية. حيث تهتم بالتقدير الكمي والنوعي للعناصر والمركبات المكونة للمادة المراد تحليلها بخلاف الفروع الأخرى من الكيمياء مثل الكيمياء اللاعضوية أو الكيمياء العضوية فإن الكيمياء التحليلية غير محصورة بنوع محدد من المركبات أو بنوع معين من التفاعلات الكيميائية.

    الخواص التي تدرس في الكيمياء التحليلية تتضمن الخواص الهندسية مثل شكل الجزيئات وتوزع الذرات بها إلى خواص مثل التركيب وتحديد المكونات من العناصر. تطورت الكيمياء التحليلية على يد الكيميائيين التحليليين وأسهم تطورها في تقدم كثير من العلوم الأخرى: بالذات الكيمياء وعلم الحياة بفروعه وعلوم الأرض والتربة: من تطوير للنظريات ومناهج البحث (علوم بحتة) إلى تطوير التطبيقات مثل التطبيقات الطبية الحيوية، البيئية ومراقبة التطورات البيئية والمناخية وتأثيرات الإنسان على البيئة، رقابة الجودة في الصناعة خاصة صناعة الأدوية، وحتى التحليلات الجينية والوراثية في أبحاث علم الأحياء والطب الجنائي.

    كلاسيكيا تصنف طرق ومناهج الكيمياء التحليلية إلى نمطين: نوعية وكمية.

    الكيمياء التحليلية الحديثة تنقسم إلى قسمين: الهدف التحليلي analytical targets (الغرض من التحليل)، أو طرق التحليل analytical methods (ابتكار طرق جديدة للتحليل).

    بعد جمع المعلومات الناتجة عن تحليل العينات يعمد لاستخدامها في تشكيل منحنى تعيير calibration curve، وقد يستخدم قياسي داخلي (شاهد داخلي) internal standard حيث يضاف بكميات معروفة للعينة المحللة للمساعدة على تحديد الكميات في التحليل. المقادير الموجودة من المادة المراد تحليلها تحدد كنسبة مقارنة بالشاهد الداخلي أو الخارجي كوسيلة تعيير، خاصة في الطرق الحديثة.

    مقدمة

    BFW student.jpg

    الكيمياء التحليلية هي فرع من علم الكيمياء يهتم بالتقدير الكمي والنوعي للعناصر أو المركبات المكونة للمادة المراد تحليلها. وينقسم هذا الفرع إلى عدة طرق واساليب يمكن استخدامها ولكل منها استخداماته وأهميته منها:

    • التحليل الحجمي والتحليل الوزني
    • التحليل الحراري
    • التحليل النوعي
    • التحليل الطيفي
    • التحليل الآلي
    • التحليل الكهربائي.

    ويمكن لبعض هذه الطرق أن تكتشف وجود مركب compound أو العناصر وبحساسية عالية قد تصل إلى تركيز جزء من مليون مليار جرام/لتر.

    موضوع الكيمياء التحليلية ومهامها

    إن طرق التحليل النوعي والتحليل الكمي متنوعة جدا. ولهذا يمكن أن تدرس مادة ما بطرق مختلفة. ويطلق اسم الكيمياء التحليلية على العلم الذي يختص بطرق التحليل. وبمعنى أوسع، فإن الكيمياء التحليلية علم لا يقتصر على طرق تحليل تركيب حليلة مراد تحليلها، بل يشمل أيضا طرق الدراسة الكيميائية المتعددة الجوانب للمواد المحيطة بنا على الأرض والكواكب التي نستطيع مراقبتها.وتساعد الكيمياء التحليلية على حل العديد من المسائل، منها:
    • إيضاح طبيعة العينة المدروسة (الحليلة analyte )، أي إثبات ما إذا كانت المادة المعنية من منشأ عضوي أو لا عضوي.
    • تحديد أشكال وجود المكونات المستقلة في العينة (مثال وجود S0، أو S−2، أو SO−23، أو SO−24) ودرجة أكسدة العناصر (Fe+2، أوFe+3، أو Cr+2، أو Cr+3، وغيرها).
    • تعيين تركيب وكمية كل من المكون الرئيسي (الذهب على هيئة فلز فطري مثلا) والشوائب الغريبة فيه (النحاس والفضة في عينة الذهب مثلا) وكذلك كمية الشوائب الدقيقة (أي الموجودات بكميات ضئيلة جدًا) وتوزعها المحلي في عينات تكنيكية عالية النقاوة (كالبورون في الجرافيت والحديد وأشباه الموصلات وغيرها).
    • تعيين صيغة مركب مجهول (كمعدن ما أو مادة مصطنعة من جديد أو مستحضر دوائي مستخلص من النبات وما شابه ذلك).
    • الكشف في المركب المعني عن عناصر تركيبية معينة ومن ثم تحديد بناء هذا المركب (كالكشف في المركب المدروس عن مجموعات هيدروكسيلية أو كربوكسيلية أو روابط ثنائية أو شقوق هيدروكربونية معينة أو ما شابه ذلك).

    تشكل الكيمياء التحليلية جزءًا من علم الكيمياء، وذلك إلى جانب الكيمياء العامة والكيمياء اللاعضوية والكيمياء العضوية والكيمياء الفيزيائية.

    ومادة الكيمياء التحليلية هي نظرية وتطبيق طرق التحليل المختلفة. أما مهماتها فهي التالية:

    1. التطوير المتعدد الجوانب لنظرية طرق التحليل،
    2. تحسين طرق التحليل الحالية وتعليلها علميا،
    3. وضع طرق جديدة في التحليل تتفق ومتطلبات العلم المتطور والصناعة الحديثة،
    4. تحليل المواد الطبيعية والوسط المحيط (الجو وغلاف الأرض المائي واليابسة) وكذلك المواد التكنيكية،
    5. تأمين رقابة كيميائية تحليلية على الصناعة والأبحاث العلمية في مجال الكيمياء والصناعة الكيميائية والكيمياء الحيوية والكيمياء الزراعية والكيمياء الجيولوجية والميتالورجيا والبيولوجيا والطب وغيرها.

    تصنيف الطرق التحليلية

    مختبر استشراب غازي (جهاز تحليل لوني غازي).
    وفقا لأهداف التحليل

    حسب طريقة التحليل

    أهمية الكيمياء التحليلية

    قضيب تحريك أثناءالعمل، يحركه من أسفل مغناطيس كهربي دوّار.

    تقوم الكيمياء التحليلية في كثير من العلوم بدور مهم، وكذلك فهي لاغنى عنها أساسًا في علم الحياة، إذ يستفاد من التقنية التحليلية في دراسة المواد الحية وعمليات التمثيل الغذائي وغيرها، ولا يستطيع الأطباء تشخيص الأمراض دون الاستناد إلى نتائج التحليلات اللازمة لذلك. كما نجد أن تقسيم المعادن جاء بعد معرفة تامة بالمكونات الكيميائية له. ولا يستطيع الفيزيائيون تشخيص نواتج تصادم الدقائق ذات الطاقة العالية بدون استخدام التقنية التحليلية في الصناعة الحديثة. إن قيمة المواد الخام ومدى نقاوة منتج صناعي وملاءمته للاستعمال والسيطرة على العمليات الصناعية في مرحلة أو أكثر نحتاج إلى معرفة الكيمياء التحليلية للتأكد من جودة الإنتاج الصناعي.

    أنواع الكيمياء التحليلية

    التحليل النوعي أو الوصفي

    هو مجموعة العمليات التي يتم فيها الكشف عن تركيب المواد أو المركبات أو العناصر الداخلة في تركيب مادة معينة أو خليط من المواد سواء أكان في الحالة الصلبة أو محلول في مذيب معين ولايتعرض هذا التحليل إطلاقًا إلى كميات هذه المكونات. وهو الذي يهتم بالمظهر الخارجى للمركب مثل اللون والرائحة والطعم

    التحليل الكمي

    ويبحث في تقدير كميات المكونات أو العناصر الداخلة في تركيب المركب الكيميائي أو الخليط، ويتبين من هذا أن التحليل النوعي لمادة مجهولة التركيب يسبق عادة التحليل الكمي لها؛ لأنه لا يجوز تقدير مادة معينة تقديرًا كميًا ما لم يتأكد من وجودها وصفيًا. ويشمل التحليل الكمي على:

    التحليل الوزني

    ويتم التحليل الكمي بالوزن بترسيب المادة وتقديرها كميًا في هيئة عنصر منفرد أو مشتق معين معروف التركيب يفصل عن المحلول بالترسيب أو الطرد المركزي ثم غسله وتجفيفه ووزنه، فيحسب وزن المادة المراد تقديرها من معرفتنا لوزن الراسب وتركيبه بدقة. فمثلا يمكن تعيين نسبة الكلور في ملح الطعام مثلا بإذابة وزن معين من الملح في الماء ثم إضافة محلول نترات الفضة إليه فيترسب على شكل كلوريد الفضة، ثم يرشح الراسب ويغسل ويجفف ثم يوزن لمعرفة كمية الكلور ونسبته في الملح، ويضم التحليل الوزني الطرق التي يتم فيها تقدير أوزان المواد أو بعض مكوناتها بطريقتين هما:

    • الطريقة المباشرة:

    وفيها يتم تحديد قياسات الأوزان لنواتج العملية التحليلية المعروفة التركيب.

    • الطريقة غير المباشرة:

    إذ تحدد بواسطتها قياسات الأوزان المفقودة أو الناقصة في الوزن بوصفها نتيجة لخاصية التطاير بالعينة.

    طرق التحليل الحجمي

    تستعمل في هذه الحالة طرق مباشرة وغير مباشرة لتعيين أوزان المواد أو بعض مكوناتها وتشمل هذه الطرق ما يلي:

    وتتضمن استعمال محاليل ذات تراكيز معلومة وقياس حجوم مثل هذه المحاليل التي تتفاعل كميًا مع محلول المادة المراد تقديرها لحد نقطة معينة تسمى نقطة التكافؤ أو نقطة انتهاء التفاعل التي يمكن الكشف عنها بواسطة الأدلة التي تتضمن تغيرًا حادًا في خواص المحلول كاللون أو التعكير الذي تلحظهما بالعين المجردة أو تقاس بالطرق الكيميائية الفيزيائية كقياس فرق الجهد أو التوصيل الكهربائي. ويسمى المحلول المعلوم التركيز بالمحلول القياسي وهو المحلول الذي يحتوي حجم معين منه على وزن معلوم من المادة المذابة. أما عملية إضافة المحلول القياسي من السحاحة إلى حجم معين من محلول المادة المجهولة التركيز في الدورق المخروطي أو العكس حتى يتم التفاعل فتسمى بعملية المعايرة. ومن قوانين التكافؤ الكيميائي وتحديد حجم المحلول القياسي المستعمل في المعايرة نستطيع أن نعين وزن المادة المجهولة أو النسب الوزنية لما فيها من مكونات سواء أكان بطرق مباشرة أو غير مباشرة.

    • التحليل الغازي:

    وتقاس بهذه الطريقة كمية الغازات المستهلكة وفيه تقدر المادة بتقدير حجم الغاز الذي قد يكون هو المادة المراد تقديرها أو ناتجًا عن تفاعل تلك المادة مع مواد أخرى بحيث تعطي غازًا يمكن تقديره. ويجب أن لا يفهم بأن عمليات التحليل الكمي والنوعي لا يمكن أن تتم إلا عن طريق التفاعلات الكيميائية. وعمليات الفصل بالطرق الطبيعية لها أثرها الواضح في بناء أكثر مراحل التحليل الكروماتوجرا في لمكونات الخليط ثم يلي ذلك التمييز بطرق كيميائية. ومع أن طرق التحليل الحجمي تتطلب توفر شروط وخبرة لتجاوز الأخطاء أو العيوب فأنها تفضل في التطبيق العملي والاستعمال على طرق التحليل الوزني؛ على الرغم من دقة النتائج التي يمكن الحصول عليها عند استعمالها لكنها تتركزوتستغرق وقتًا طويلا ً لإتمام التحليل، قد يتجاوز الانتظار للحصول على نتائجها عدة ساعات أو أيام، وهو ما لا يتفق والحاجة العملية خاصة في السيطرة الكيميائية على العمليات الصناعية لتوجيه التفاعلات إلى الوجهة الصحيحة للحصول على نتائج ذات مواصفات عالية الجودة.'''

    طرق التحليل الآلي

    تقدر المادة بقياس بعض من خواصها الفيزيائية أو الكيميائية مثل الكثافة واللون ومعامل الانكسار والتوصيلة الكهربائية والتغيرلت الحرارية والكهربائية.....الخ. وتعتمد هذه الطرق أساسًا على القياسات الآتية:

    1. انبعاث الطاقة الضوئية

    يتضمن هذا القياس إثارة المادة إلى مستويات عالية من الطاقة بالطاقة الضوئية أو الكهربائية ثم رجوعها إلى مستوى طاقة منخفض فينبعث منها من الطاقة الممتصة وتكون مقياسًا لكمية المادة وذلك بواسطة الطرق الآتية:

    • طرق تسجيل الطيف الانبعاثي (emission spectrography)، حيث تثار المادة باستخدام القوس الكهربائي.
    • المطياف الفوتومتري باللهب(flame photometry)، حيث تثار المادة باستخدام أنواع مختلفة من اللهب وبعد رجوع المادة إلى حافة طاقة منخفضة تقاس كمية الضوء المنبعثة.
    • وميض الأشعة السينية (x-ray fluorecence)حيث تثار المادة بأشعة سينية ذات طول موجي معين وبعد رجوعها إلى حالة طاقة منخفضة تقاس الأشعة المنبعثة وهي التي تقوم بتمييز العنصر.
    1. امتصاص الطاقة الضوئية

    ويتضمن قياس كمية الطاقة الضوئية عند طول موجه معينة تمتصها المادة المراد تحليلها، ولهذا يمكن استخدام مايلي: أ - الطرق الطيفية اللونية.
    ب - الطرق الطيفية في المنطقة فوق البنفسجية.
    جـ- الطرق الطيفية في المنطقة تحت الحمراء.
    د - طريقة الأشعة السينية.
    هـ- الرنين النووي المغناطيسي: تتضمن هذه الطريقة التفاعل بين موجات الراديو وأنوية الذرات التي تكون في مجال مغناطيسي.

    1. الطرق الكهربائية

    أ - التحليل بطريقة التوصيل الكهربائي حيث يقاس التغير في معامل التوصيل الكهربائي لمحلول النموذج.
    ب - التحليل بقياس فرق الجهد حيث يقاس الجهد الكهربائي المتغير في أثناء التفاعل عند وضع القطب في المحلول ويمكن معرفة انتهاء التفاعل ومن ثم يمكن حساب تركيز المواد المتفاعلة.
    جـ- التحليل بقياس الكمية الكهربائية حيث تقاس الكمية الكهريائية بالكولوم اللازمة لإكمال التفاعل الكهروكيميائي.
    د - البولاروجرافيا حيث تقاس قيمة التيار الكهريائي حيث تتناسب مع تركيز المادة التي تختزل أو تتأكسد في تفاعل كهروكيميائي عند القطب المايكروني.

    1. التحليل الكروماتوجرافي

    يعتمد هذا النوع من التحليل على اختلاف المواد بعضها عن بعض في ميلها للأمتزاز أو التجزئة أو التبادل خلال سطح مغلف بمذيب مناسب أو خلال مادة كيميائية ومن ثم يمكن أن تنفصل تلك المواد، وتنقسم طرق التحليل الكروماتوجرافي إلى:

    1. كروماتوجرافيا الادمصاص: ويقصد به التحليل الكروماتوجرافي عن طريق الأدمصاص على السطح.
    2. كروماتوجرافيا التبادل الأيوني: ويقصد به التحليل الكروماتوجرافي عن طريق تبادل الأيونات بين مادة التقدير وبين أيونات السطح الذي يحدث عملية التبادل وهي مادة كيميائية راتنجية.
    3. كروماتوجرافيا التجزئة: ويقصد به التحليل الكروماتوجرافي عن طريق الفصل التجزيئي لمخلوط من عدة مواد وتنقسم هذه الطريقة إلى كروماتوجرافيا العمود بالتجزئة ويتم فيها التحليل على عمود معبأ بمادة معينة.
    4. كروماتوجرافيا الطبقة الرقيقة: وفيه يتم التحليل الكروماتوجرافي بالادمصاص أو التوزيع على ألواح زجاجية تنثر عليها مادة مسامية يجرى عليها الفصل والتحليل.

    5.كروماتوغرافيا الأداء الفائق للسوائل HPLC:

    تفضل طرق الاستشراب السائل فائق الأداء (High-performance liquid chromatography) (HPLC) على الطرق المتبعة الأخرى في التحليل الكمي. وذلك لنوعيتها المثالية للحليلة analyte أو الحلائل المراد فصلها، بحيث نحصل على فصل نوعي ودقيق لمكونات المزيج المراد التعرف عليه. إن أجهزة الـ HPLC متوفرة بسهولة لأنها تستخدم في مجالات متعددة منها مجال التقانة الحيوية والتقانة الطبية السريرية والتحاليل الصيدلانية. إضافة إلى استخدامها في الكيمياء ومستحضرات التجميل وفي الطاقة والبيئة والصناعات الغذائية. كما وأن توافر أجهزة بأسعار مقبولة وذات كفاءة متطورة وموثوقة قد جعل أجهزة الـHPLC هي الطريقة المفضلة في التحاليل الصيدلانية وذلك بدءً من إنشاء Synthesis العقار أو فصل مكوناته أو ضبط جودته. لقد تطور استخدام الـHPLC بشكل كبير خلال العقود الماضية ففي الستينات تم وضع الأسس والمبادئ النظرية لهذه التقنية، وأدى التطور في مواد تعبئة عمود الاستشراب في السبعينات إلى تطور الاستشراب بالطور العكوس. وفي الثمانينات أدى التطور في الحواسيب والأتمتة إلى سهولة استخدام الـ HPLC. وفي التسعينات طورت أعمدة الاستشراب الميكرونية (الصغيرة) وأعمدة الاستشراب المتخصصة لاستعمال محدد، المشعرات (متحريات) Detector الثابتة، بالإضافة إمكانات الحصول على البيانات المتكاملة وتخزينها واسترجاعها، مما أدى إلى الزيادة الكبيرة في فعالية وسرعة أجهزة الـ HPLC.

    1. كروماتوجرافيا الغاز: ويتضمن هذا التحليل الكروماتوجرافي باستخدام غاز ناقل يقوم بحمل أبخرة المواد المحللة فيتم اتصال أبخرة هذه المواد تبعًا لدرجات غليانها أي تظهر أولا ً المواد ذات درجات الغليان المنخفضة يتبعها المواد ذات درجات الغليان العالية وتخرج هذه الأبخرة لتنضم إلى الغاز الناقل ومن ثم يمكن فصل هذه المواد عن بعضها وتعينها ويمكن أيضًا بطريقة كروماتوجرافيا الغاز إجراء التقدير الكمي لهذه المواد المنفصلة.

    طرق مختلفة

    1. التحليل باستخدام البولاروميتر: يقاس مقدار الانحراف الناتج عند مرور الضوء المستقطب خلال المحلول.
    2. التحليل بقياس انكسار الضوء: يقاس معامل الانكسار الذي يقوم بتعيين التركيب الكيميائي للخليط.
    3. مطياف الكتلة: يمكن بهذه الطريقة قياس النسبة بين شحنة كتلة أيونات مختلفة ناتجة من تكسير جزيئات كبيرة ومنه يمكن إيجاد الوزن الجزيئي والتركيز.
    4. التوصيل الحراري: وفيه يقاس التوصيل الحراري ويستدل منه على تركيب المادة.
    5. طرق تحليل المواد المشعة: وفيه تشع المادة لتصبح ذات نشاط إشعاعي ثم تعد الأشعة أو الجسيمات المتدفقة منها لغرض تقديرها كميًا.

    المراجع


    1. أ.كريشوف أ.ياروسلافتسيف ترجمة الدكتور عيسى مسوح (1982). الكيمياء التحليلية. دار مير للطباعة والنشر.

    اقرأ أيضا

    وصلات خارجية

  • صبحي (2011-01-01). الكيمياء الشيقة. Al Manhal. ISBN 9796500154848. مؤرشف من الأصل في 19 يناير 2020.
  • ليست هناك تعليقات:

    إرسال تعليق